HW 1: Vector Analysis

Example 1.2 Find the angle between the face diagonals of a cube.

Problem 1.4 Use the cross product to find the components of the unit vector \vec{n} perpendicular to the plane shown in Fig. 1.11.

Figure 1.11

Problem 1.5 Prove the BAC-CAB rule by writing out both sides in component form.

$$
\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})
$$

Example 1.3 Find the gradient of $r=\sqrt{x^{2}+y^{2}+z^{2}}$ (the magnitude of the position vector).

Problem 1.15 Calculate the divergence of the following vector functions:
(a) $\mathbf{v}_{a}=x^{2} \hat{\mathbf{x}}+3 x z^{2} \hat{\mathbf{y}}-2 x z \hat{\mathbf{z}}$.
(b) $\mathbf{v}_{b}=x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 z x \hat{\mathbf{z}}$.
(c) $\mathbf{v}_{c}=y^{2} \hat{\mathbf{x}}+\left(2 x y+z^{2}\right) \hat{\mathbf{y}}+2 y z \hat{\mathbf{z}}$.

Problem 1.18 Calculate the curls of the vector functions in Prob. 1.15.

Problem 1.39 Compute the divergence of the function

$$
\mathbf{v}=(r \cos \theta) \hat{\mathbf{r}}+(r \sin \theta) \hat{\boldsymbol{\theta}}+(r \sin \theta \cos \phi) \hat{\boldsymbol{\phi}}
$$

Check the divergence theorem for this function, using as your volume the inverted hemispherical bowl of radius R, resting on the $x y$ plane and centered at the origin (Fig. 1.40).

Figure 1.40

